Improvement over Bayes Prediction in Small Samples in the Presence of Model Uncertainty Author(s):

نویسندگان

  • Hubert Wong
  • Bertrand Clarke
  • Hubert WONG
چکیده

In an online prediction context, the authors introduce anew class of mongrel criteria that allow for the weighing of candidate models and the combination of their predictions based both on model-based and empirical measures of their performance. They present simulation results which show that model averaging using the mongrel-derived weights leads, in small samples, to predictions that are more accurate than that obtained by Bayesian weight updating, provided that none of the candidate models is too distant from the data generator. Amelioration de la prevision bayesienne dans les petits echantillons en presence d'incertitude a propos du modele Resume : Dans un contexte de provision continue, les auteurs proposent une nouvelle classe de criteres "metisses" permettant de ponderer differents mod6les envisages et de combiner leurs provisions A partir de mesures fondees sur ces modeles et sur leur performance empirique. Ils font etat de simulations montrant que la synth6se de modeles au moyen de poids metisses conduit, dans de petits echantillons, a des previsions plus precises que celle obtenue par mise a jour bayEsienne des poids, pourvu qu'aucun des modeles en cause ne soit trop eloigne de celui dont emanent les donnees.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayes, E-Bayes and Robust Bayes Premium Estimation and Prediction under the Squared Log Error Loss Function

In risk analysis based on Bayesian framework, premium calculation requires specification of a prior distribution for the risk parameter in the heterogeneous portfolio. When the prior knowledge is vague, the E-Bayesian and robust Bayesian analysis can be used to handle the uncertainty in specifying the prior distribution by considering a class of priors instead of a single prior. In th...

متن کامل

A Validation Test Naive Bayesian Classification Algorithm and Probit Regression as Prediction Models for Managerial Overconfidence in Iran's Capital Market

Corporate directors are influenced by overconfidence, which is one of the personality traits of individuals; it may take irrational decisions that will have a significant impact on the company's performance in the long run. The purpose of this paper is to validate and compare the Naive Bayesian Classification algorithm and probit regression in the prediction of Management's overconfident at pre...

متن کامل

BAYES PREDICTION INTERVALS FOR THE BURR TYPE XI1 DISTRIBUTION IN THE PRESENCE OF OUTLIERS

Using a sample fiom Burr type XU distribution, Bayes prediction intervals are derived for the maximum and minimum of a future sample fromthe same distribution, but in the presence of a single outlier of the type 8,8. The prior of Q is assumed to be the gamma conjugate. A real example is given to illustrate the procedure. Also, the comparison between the values of the prediction bounds for dif...

متن کامل

Some New Developments in Small Area Estimation

Small area estimation has received a lot of attention in recent years due to growing demand for reliable small area statistics. Traditional area-specific estimators may not provide adequate precision because sample sizes in small areas are seldom large enough. This makes it necessary to employ indirect estimators based on linking models. Basic area level and unit level models have been extensiv...

متن کامل

Assessment and Calibration of the Curve Number Method (SCS-CN) for Estimating Runoff in the Aras Sub-basins, North West of Iran

The SCS-curve number is one of the common methods to estimate drirect runoff in the watershed scale. There is often an uncertainty in predicting runoff in many areas due to to the model’s assumption on the initial abstraction ratio (l= 0.20). This study was conducted to evaluate the accuracy of SCS-CN method in estimating runoff in some semi-arid subbasins of the Aras river consits of the Livar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007